organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Hydroxyadamantane-1-acetic acid

Xiao-Hong Geng, Li-Chun Kong and Yun-Long Feng*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: sky37@zjnu.cn

Received 28 May 2008; accepted 3 July 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.130; data-to-parameter ratio = 17.5.

The crystal structure of the title adamantane derivative, $C_{12}H_{18}O_3$, has been determined by X-ray diffraction. The structure is stabilized by intermolecular $O-H\cdots O$ hydrogen bonds, forming a chain.

Related literature

For related literature, see: Lu & Yang (1996); Tukada & Mochizuki (2005); Zhao *et al.* (2003).

Experimental

Crystal data

c = 11.5469 (15) Å
$\alpha = 106.919 \ (10)^{\circ}$
$\beta = 94.838 \ (10)^{\circ}$
$\gamma = 104.443 \ (7)^{\circ}$
V = 545.73 (13) Å ³

Z = 2Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.98, \ T_{\max} = 0.99$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.130$ S = 1.03 2488 reflections 142 parameters2 restraints $0.30 \times 0.13 \times 0.10 \text{ mm}$

T = 296 (2) K

8786 measured reflections 2488 independent reflections 1574 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.033$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···O3 ⁱ	0.815 (15)	1.995 (16)	2.7959 (18)	168 (2)
O2−H2···O1 ⁱⁱ	0.850 (16)	1.811 (16)	2.649 (2)	168 (2)

Symmetry codes: (i) x - 1, y - 1, z; (ii) -x + 1, -y + 2, -z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2572).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lu, F. X. & Yang, Y. (1996). Handbook of Clinic Practical Drugs. Nanjing: Jiangsu Science and Technology Press.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tukada, H. & Mochizuki, K. (2005). J. Mol. Struct. 655, 473-478.
- Zhao, G. L., Feng, Y. L., Hu, X. C. & Kong, L. C. (2003). *Chin. J. Appl. Chem.* **20**, 802–808.

supplementary materials

Acta Cryst. (2008). E64, o1716 [doi:10.1107/S1600536808020515]

3-Hydroxyadamantane-1-acetic acid

X.-H. Geng, L.-C. Kong and Y.-L. Feng

Comment

Adamantane and its derivatives have an extensive application in the field of medicine. For instance, adamantaneamine has an obvious effect on controlling the exuviating the influenza A virus and it can alleviate the Parkinson symptom (Lu *et al.*, 1996). A large number of compounds containing amantadine have been synthesized (Tukada & Mochizuki, 2005; Zhao *et al.*, 2003). Here we report the synthesis and crystal structure of the title compound (I), illustrated in Fig. 1.

The title compound (I) is an adamantane derivative. Single-crystal X-ray diffraction analyses demonstrate that hydrogen bonding produces an extensive polymeric network since the hydroxyl group substituents are simultaneously hydrogen bonded to the OH of the carboxyl group on an adjacent molecule and the carbonyl group of a different neighbor forming a 12-membered ring as shown in Fig. 2. A 16-membered ring is formed by intermolecular hydrogen bonding between the carbonyl O and hydroxyl H atoms of two molecules. The alternating 12- and 16-membered rings make the compound to form a one-dimensional network.

Experimental

The 3-hydroxy-1-adamantaneacetic was obtained from Zhejiang Key Laboratory for Reactive Chemistry on Solid Surface. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of distilled water.

Refinement

The H atoms bonded to C atoms were positioned geometrically [C—H = 0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.82 and $U_{iso}(H) = 1.2U_{eq}(O)$.

Figures

Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are shown at the 30% probability level.

Fig. 2. A packing diagram for the title compound. The O—H \cdots O interactions are depicted by dashed lines.

3-Hydroxyadamantane-1-acetic acid

Crystal data	
C ₁₂ H ₁₈ O ₃	Z = 2
$M_r = 210.26$	$F_{000} = 228$
Triclinic, P1	$D_{\rm x} = 1.280 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.5120 (9) Å	Cell parameters from 1598 reflections
<i>b</i> = 7.9485 (11) Å	$\theta = 1.9 - 27.5^{\circ}$
c = 11.5469 (15) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 106.919 \ (10)^{\circ}$	T = 296 (2) K
$\beta = 94.838 \ (10)^{\circ}$	Block, colourless
$\gamma = 104.443 \ (7)^{\circ}$	$0.30\times0.13\times0.10~mm$
$V = 545.73 (13) \text{ Å}^3$	

Data collection

Bruker APEXII area-detector diffractometer	2488 independent reflections
Radiation source: fine-focus sealed tube	1574 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 296(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.98, T_{\max} = 0.99$	$k = -10 \rightarrow 10$
8786 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.048$
$wR(F^2) = 0.130$
<i>S</i> = 1.03
2488 reflections
142 parameters
2 restraints

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.052P)^2 + 0.1083P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.17 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.0947 (2)	0.76522 (17)	0.09607 (12)	0.0581 (4)
H1	0.024 (3)	0.690 (3)	0.1232 (19)	0.070*
O2	0.5777 (2)	1.30404 (19)	0.01092 (13)	0.0620 (4)
H2	0.694 (3)	1.295 (3)	-0.015 (2)	0.074*
O3	0.7982 (2)	1.51594 (19)	0.17220 (13)	0.0647 (4)
C4	-0.0106 (3)	0.9805 (3)	0.26199 (16)	0.0462 (4)
H4B	-0.0679	0.8858	0.2976	0.055*
H4A	-0.1258	0.9836	0.2043	0.055*
C9	0.3516 (3)	0.9321 (2)	0.28586 (16)	0.0444 (4)
H9B	0.4665	0.9027	0.2431	0.053*
H9A	0.2979	0.8377	0.3223	0.053*
C3	0.1714 (3)	0.9376 (2)	0.19572 (15)	0.0392 (4)
C2	0.2580 (3)	1.0849 (2)	0.13783 (15)	0.0387 (4)
H2B	0.1441	1.0871	0.0790	0.046*
H2A	0.3724	1.0562	0.0943	0.046*
C8	0.5237 (3)	1.2664 (2)	0.32771 (15)	0.0413 (4)
H8B	0.5804	1.3850	0.3913	0.050*
H8A	0.6399	1.2391	0.2854	0.050*
C7	0.4377 (3)	1.1188 (2)	0.38625 (16)	0.0441 (4)
H7A	0.5541	1.1154	0.4444	0.053*
C6	0.2554 (3)	1.1612 (3)	0.45363 (16)	0.0494 (5)
H6B	0.2012	1.0676	0.4906	0.059*
H6A	0.3086	1.2787	0.5185	0.059*
C5	0.0756 (3)	1.1668 (2)	0.36319 (16)	0.0458 (5)
H5A	-0.0411	1.1949	0.4065	0.055*
C10	0.1616 (3)	1.3152 (2)	0.30564 (17)	0.0464 (5)
H10B	0.2146	1.4338	0.3694	0.056*
H10A	0.0462	1.3203	0.2491	0.056*
C1	0.3444 (3)	1.2738 (2)	0.23674 (14)	0.0352 (4)
C11	0.4224 (3)	1.4276 (2)	0.18016 (16)	0.0457 (5)
H11A	0.3065	1.4201	0.1186	0.055*
H11B	0.4522	1.5452	0.2441	0.055*
C12	0.6181 (3)	1.4222 (2)	0.12218 (16)	0.0436 (4)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0652 (10)	0.0397 (7)	0.0542 (8)	-0.0080 (6)	0.0268 (7)	0.0076 (6)
0.0614 (10)	0.0572 (9)	0.0552 (9)	0.0018 (7)	0.0240 (7)	0.0091 (7)
0.0584 (10)	0.0567 (9)	0.0637 (9)	-0.0088 (7)	0.0151 (7)	0.0171 (7)
0.0361 (10)	0.0536 (11)	0.0504 (11)	0.0072 (8)	0.0157 (8)	0.0217 (9)
0.0466 (11)	0.0412 (10)	0.0567 (11)	0.0145 (8)	0.0201 (9)	0.0279 (8)
0.0391 (10)	0.0350 (9)	0.0390 (9)	0.0028 (7)	0.0129 (7)	0.0099 (7)
0.0364 (10)	0.0412 (9)	0.0369 (9)	0.0050 (7)	0.0088 (7)	0.0147 (7)
0.0393 (10)	0.0392 (9)	0.0429 (9)	0.0043 (8)	0.0046 (8)	0.0162 (8)
0.0427 (11)	0.0492 (10)	0.0432 (10)	0.0095 (8)	0.0026 (8)	0.0237 (8)
0.0646 (13)	0.0448 (10)	0.0387 (10)	0.0092 (9)	0.0153 (9)	0.0171 (8)
0.0464 (11)	0.0484 (10)	0.0510 (11)	0.0180 (9)	0.0251 (9)	0.0202 (9)
0.0498 (11)	0.0471 (10)	0.0519 (11)	0.0210 (9)	0.0181 (9)	0.0218 (9)
0.0360 (9)	0.0351 (9)	0.0392 (9)	0.0098 (7)	0.0110 (7)	0.0179 (7)
0.0564 (12)	0.0384 (10)	0.0507 (10)	0.0156 (9)	0.0175 (9)	0.0228 (8)
0.0575 (13)	0.0317 (9)	0.0449 (10)	0.0066 (9)	0.0153 (9)	0.0208 (8)
	U^{11} 0.0652 (10) 0.0614 (10) 0.0584 (10) 0.0361 (10) 0.0361 (10) 0.0391 (10) 0.0391 (10) 0.0364 (10) 0.0427 (11) 0.0646 (13) 0.0464 (11) 0.0498 (11) 0.0360 (9) 0.0564 (12) 0.0575 (13)	U^{11} U^{22} $0.0652 (10)$ $0.0397 (7)$ $0.0652 (10)$ $0.0397 (7)$ $0.0614 (10)$ $0.0572 (9)$ $0.0584 (10)$ $0.0567 (9)$ $0.0361 (10)$ $0.0536 (11)$ $0.0466 (11)$ $0.0412 (10)$ $0.0391 (10)$ $0.0350 (9)$ $0.0364 (10)$ $0.0412 (9)$ $0.0393 (10)$ $0.0392 (9)$ $0.0427 (11)$ $0.0492 (10)$ $0.0646 (13)$ $0.0448 (10)$ $0.0464 (11)$ $0.0471 (10)$ $0.0360 (9)$ $0.0351 (9)$ $0.0564 (12)$ $0.0317 (9)$	U^{11} U^{22} U^{33} $0.0652 (10)$ $0.0397 (7)$ $0.0542 (8)$ $0.0614 (10)$ $0.0572 (9)$ $0.0552 (9)$ $0.0584 (10)$ $0.0567 (9)$ $0.0637 (9)$ $0.0361 (10)$ $0.0536 (11)$ $0.0504 (11)$ $0.0466 (11)$ $0.0412 (10)$ $0.0567 (11)$ $0.0391 (10)$ $0.0350 (9)$ $0.0390 (9)$ $0.0364 (10)$ $0.0412 (9)$ $0.0399 (9)$ $0.0393 (10)$ $0.0392 (9)$ $0.0429 (9)$ $0.0427 (11)$ $0.0492 (10)$ $0.0387 (10)$ $0.0466 (13)$ $0.0448 (10)$ $0.0510 (11)$ $0.0464 (11)$ $0.0471 (10)$ $0.0519 (11)$ $0.0360 (9)$ $0.0351 (9)$ $0.0392 (9)$ $0.0564 (12)$ $0.0384 (10)$ $0.0507 (10)$ $0.0575 (13)$ $0.0317 (9)$ $0.0449 (10)$	U^{11} U^{22} U^{33} U^{12} $0.0652 (10)$ $0.0397 (7)$ $0.0542 (8)$ $-0.0080 (6)$ $0.0614 (10)$ $0.0572 (9)$ $0.0552 (9)$ $0.0018 (7)$ $0.0584 (10)$ $0.0567 (9)$ $0.0637 (9)$ $-0.0088 (7)$ $0.0361 (10)$ $0.0536 (11)$ $0.0504 (11)$ $0.0072 (8)$ $0.0466 (11)$ $0.0412 (10)$ $0.0567 (11)$ $0.0145 (8)$ $0.0391 (10)$ $0.0350 (9)$ $0.0390 (9)$ $0.0028 (7)$ $0.0364 (10)$ $0.0412 (9)$ $0.0369 (9)$ $0.0050 (7)$ $0.0393 (10)$ $0.0392 (9)$ $0.0429 (9)$ $0.0043 (8)$ $0.0427 (11)$ $0.0492 (10)$ $0.0432 (10)$ $0.0095 (8)$ $0.0446 (13)$ $0.0448 (10)$ $0.0510 (11)$ $0.0180 (9)$ $0.0464 (11)$ $0.0471 (10)$ $0.0519 (11)$ $0.0210 (9)$ $0.0360 (9)$ $0.0351 (9)$ $0.0392 (9)$ $0.0098 (7)$ $0.0564 (12)$ $0.0384 (10)$ $0.0507 (10)$ $0.0156 (9)$ $0.0575 (13)$ $0.0317 (9)$ $0.0449 (10)$ $0.0066 (9)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0652 (10)$ $0.0397 (7)$ $0.0542 (8)$ $-0.0080 (6)$ $0.0268 (7)$ $0.0614 (10)$ $0.0572 (9)$ $0.0552 (9)$ $0.0018 (7)$ $0.0240 (7)$ $0.0584 (10)$ $0.0567 (9)$ $0.0637 (9)$ $-0.0088 (7)$ $0.0151 (7)$ $0.0361 (10)$ $0.0536 (11)$ $0.0504 (11)$ $0.0072 (8)$ $0.0157 (8)$ $0.0466 (11)$ $0.0412 (10)$ $0.0567 (11)$ $0.0145 (8)$ $0.0201 (9)$ $0.0391 (10)$ $0.0350 (9)$ $0.0390 (9)$ $0.0028 (7)$ $0.0129 (7)$ $0.0364 (10)$ $0.0412 (9)$ $0.0369 (9)$ $0.0050 (7)$ $0.0088 (7)$ $0.0393 (10)$ $0.0392 (9)$ $0.0429 (9)$ $0.0043 (8)$ $0.0046 (8)$ $0.0427 (11)$ $0.0492 (10)$ $0.0387 (10)$ $0.0092 (9)$ $0.0153 (9)$ $0.0464 (13)$ $0.0448 (10)$ $0.0510 (11)$ $0.0180 (9)$ $0.0251 (9)$ $0.0464 (11)$ $0.0471 (10)$ $0.0519 (11)$ $0.0210 (9)$ $0.0181 (9)$ $0.0360 (9)$ $0.0351 (9)$ $0.0392 (9)$ $0.0098 (7)$ $0.0110 (7)$ $0.0564 (12)$ $0.0384 (10)$ $0.0507 (10)$ $0.0156 (9)$ $0.0153 (9)$

Geometric parameters (Å, °)

O1—C3	1.447 (2)	C8—C7	1.532 (2)
O1—H1	0.815 (15)	C8—H8B	0.9700
O2—C12	1.311 (2)	C8—H8A	0.9700
O2—H2	0.850 (16)	С7—С6	1.527 (3)
O3—C12	1.210 (2)	C7—H7A	0.9800
C4—C3	1.519 (2)	C6—C5	1.520 (3)
C4—C5	1.530 (2)	С6—Н6В	0.9700
C4—H4B	0.9700	С6—Н6А	0.9700
C4—H4A	0.9700	C5—C10	1.529 (2)
С9—С3	1.519 (2)	С5—Н5А	0.9800
С9—С7	1.528 (2)	C10—C1	1.536 (2)
С9—Н9В	0.9700	C10—H10B	0.9700
С9—Н9А	0.9700	C10—H10A	0.9700
C3—C2	1.525 (2)	C1—C11	1.546 (2)
C2—C1	1.532 (2)	C11—C12	1.493 (2)
C2—H2B	0.9700	C11—H11A	0.9700
C2—H2A	0.9700	C11—H11B	0.9700
C8—C1	1.528 (2)		
C3—O1—H1	107.3 (15)	С9—С7—Н7А	109.5
С12—О2—Н2	110.6 (16)	С8—С7—Н7А	109.5
C3—C4—C5	109.05 (14)	C5—C6—C7	109.37 (13)
C3—C4—H4B	109.9	С5—С6—Н6В	109.8
C5—C4—H4B	109.9	С7—С6—Н6В	109.8
C3—C4—H4A	109.9	С5—С6—Н6А	109.8
C5—C4—H4A	109.9	С7—С6—Н6А	109.8
H4B—C4—H4A	108.3	H6B—C6—H6A	108.2

С3—С9—С7	109.47 (13)	C6—C5—C10	109.57 (15)
С3—С9—Н9В	109.8	C6—C5—C4	109.75 (14)
С7—С9—Н9В	109.8	C10C5C4	109.33 (14)
С3—С9—Н9А	109.8	С6—С5—Н5А	109.4
С7—С9—Н9А	109.8	C10C5H5A	109.4
Н9В—С9—Н9А	108.2	С4—С5—Н5А	109.4
O1—C3—C9	110.50 (14)	C5-C10-C1	110.38 (13)
O1—C3—C4	110.82 (13)	C5-C10-H10B	109.6
C9—C3—C4	109.93 (14)	C1C10H10B	109.6
O1—C3—C2	106.48 (13)	C5-C10-H10A	109.6
C9—C3—C2	109.35 (13)	C1C10H10A	109.6
C4—C3—C2	109.69 (14)	H10B-C10-H10A	108.1
C3—C2—C1	110.46 (12)	C8—C1—C2	108.35 (13)
C3—C2—H2B	109.6	C8—C1—C10	108.54 (13)
C1—C2—H2B	109.6	C2-C1-C10	108.65 (14)
C3—C2—H2A	109.6	C8—C1—C11	111.84 (14)
C1—C2—H2A	109.6	C2—C1—C11	111.65 (13)
H2B—C2—H2A	108.1	C10-C1-C11	107.71 (13)
C1—C8—C7	110.32 (13)	C12—C11—C1	115.10 (13)
C1—C8—H8B	109.6	C12—C11—H11A	108.5
С7—С8—Н8В	109.6	C1—C11—H11A	108.5
C1—C8—H8A	109.6	C12—C11—H11B	108.5
С7—С8—Н8А	109.6	C1—C11—H11B	108.5
H8B—C8—H8A	108.1	H11A—C11—H11B	107.5
C6—C7—C9	108.98 (14)	O3—C12—O2	122.43 (17)
C6—C7—C8	109.93 (14)	O3—C12—C11	123.93 (17)
С9—С7—С8	109.30 (13)	O2—C12—C11	113.63 (17)
С6—С7—Н7А	109.5		
C7—C9—C3—O1	176.98 (12)	C3—C4—C5—C10	60.50 (18)
C7—C9—C3—C4	-60.38 (17)	C6—C5—C10—C1	60.28 (19)
C7—C9—C3—C2	60.09 (17)	C4—C5—C10—C1	-60.04 (19)
C5—C4—C3—O1	-177.88 (13)	C7—C8—C1—C2	-59.16 (17)
C5—C4—C3—C9	59.68 (17)	C7—C8—C1—C10	58.66 (17)
C5—C4—C3—C2	-60.59 (18)	C7—C8—C1—C11	177.35 (14)
O1—C3—C2—C1	-179.80 (13)	C3—C2—C1—C8	59.39 (17)
C9—C3—C2—C1	-60.39 (17)	C3—C2—C1—C10	-58.36 (17)
C4—C3—C2—C1	60.23 (18)	C3—C2—C1—C11	-177.01 (14)
C3—C9—C7—C6	60.25 (16)	C5-C10-C1-C8	-59.19 (18)
C3—C9—C7—C8	-59.91 (18)	C5-C10-C1-C2	58.44 (18)
C1—C8—C7—C6	-59.55 (18)	C5-C10-C1-C11	179.54 (14)
C1—C8—C7—C9	60.02 (18)	C8—C1—C11—C12	53.8 (2)
C9—C7—C6—C5	-60.32 (17)	C2-C1-C11-C12	-67.8 (2)
C8—C7—C6—C5	59.45 (18)	C10-C1-C11-C12	172.94 (15)
C7—C6—C5—C10	-59.72 (18)	C1—C11—C12—O3	-98.6 (2)
C7—C6—C5—C4	60.34 (18)	C1—C11—C12—O2	80.82 (19)
C3—C4—C5—C6	-59.71 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
01—H1···O3 ⁱ	0.815 (15)	1.995 (16)	2.7959 (18)	168 (2)
O2—H2···O1 ⁱⁱ	0.850 (16)	1.811 (16)	2.649 (2)	168 (2)
Symmetry codes: (i) <i>x</i> -1, <i>y</i> -1, <i>z</i> ; (ii) - <i>x</i> +1, - <i>y</i> +2, - <i>z</i> .				

